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ABSTRACT Even though differences in methodology (e.g., sample volume and
detection method) have been shown to affect observed microbial water quality, multiple
sampling and laboratory protocols continue to be used for water quality monitoring.
Research is needed to determine how these differences impact the comparability
of findings to generate best management practices and the ability to perform meta-
analyses. This study addresses this knowledge gap by compiling and analyzing a
data set representing 2,429,990 unique data points on at least one microbial water
quality target (e.g., Salmonella presence and Escherichia coli concentration). Variance
partitioning analysis was used to quantify the variance in likelihood of detecting each
pathogenic target that was uniquely and jointly attributable to non-methodological
versus methodological factors. The strength of the association between microbial water
quality and select methodological and non-methodological factors was quantified
using conditional forest and regression analysis. Fecal indicator bacteria concentrations
were more strongly associated with non-methodological factors than methodological
factors based on conditional forest analysis. Variance partitioning analysis could not
disentangle non-methodological and methodological signals for pathogenic Escheri-
chia coli, Salmonella, and Listeria. This suggests our current perceptions of foodborne
pathogen ecology in water systems are confounded by methodological differences
between studies. For example, 31% of total variance in likelihood of Salmonella detection
was explained by methodological and/or non-methodological factors, 18% was jointly
attributable to both methodological and non-methodological factors. Only 13% of
total variance was uniquely attributable to non-methodological factors for Salmonella,
highlighting the need for standardization of methods for microbiological water quality
testing for comparison across studies.

IMPORTANCE The microbial ecology of water is already complex, without the added
complications of methodological differences between studies. This study highlights the
difficulty in comparing water quality data from projects that used different sampling
or laboratory methods. These findings have direct implications for end users as there
is no clear way to generalize findings in order to characterize broad-scale ecological
phenomenon and develop science-based guidance. To best support development of risk
assessments and guidance for monitoring and managing waters, data collection and
methods need to be standardized across studies. A minimum set of data attributes that
all studies should collect and report in a standardized way is needed. Given the diversity
of methods used within applied and environmental microbiology, similar studies are
needed for other microbiology subfields to ensure that guidance and policy are based on
a robust interpretation of the literature.
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F ood and waterborne disease outbreaks have been linked to the use of contamina-
ted water for food production or recreation (1-6). There is interest in developing
models to predict when, where, and how much water is likely to become contamina-
ted with enteric bacteria and foodborne pathogens. These models may support risk
assessments and the development of guidance for monitoring and managing hazards
in waters. Model development relies on having sufficiently large quantities of data for
model training and testing. A multitude of studies have surveyed waters for foodborne
pathogens, pathogen surrogates, and fecal indicator bacteria (7-18). The sampling and
laboratory methods used by published studies are diverse and often vary by laboratory
and available resources. For example, some studies collected water samples using Moore
swabs, which capture microbial water quality flowing through a waterway during a
given time frame (7, 16, 19), while other studies collected water using grab samples,
which provides a snapshot of water quality at the moment of sample collection (16,
20). For grab samples, volumes vary substantially between studies with ranges between
3.33 mL (20) and 10 L (16, 21). Furthermore, both filtration methods (11, 16, 20, 22-24)
and foodborne pathogen detection [culture-based (12, 25, 26) versus molecular-based
methods (13, 21)] have varied across studies.

Previous studies have reported that methodological differences affect observed
microbial water quality (15, 16, 27-32). The odds of pathogenic Escherichia coli and
Salmonella detection were lower for 10-L grab samples filtered through modified Moore
swabs, compared to 24-hour Moore swabs collected from the same waterways at the
same time (16). A Mid-Atlantic study reported Salmonella detection was 26 and 44 times
more likely when 10-L samples were collected compared to 1.0- and 0.1-L samples,
respectively (32). Findings from these and other studies demonstrate that results may
not be comparable when different sampling and laboratory methods are used. However,
these past studies were limited geographically (e.g., focused on one or two regions
and sampling a small number of waterways), temporally (e.g., conducted over a single
growing season), and/or in sample size (e.g., small number of samples were collected).
To address these limitations, the present study assessed how methodological differences
impact the comparability of study findings using data from multiple studies to ensure
sufficient sample size, geographical diversity, and temporal coverage.

Prior studies have also investigated and compared microbial water quality between
water type and region (12, 16, 33-36). A 2020 review of agricultural water in the
Southeastern United States noted that the geographical location of a water source
played an important role in the prevalence and survival of foodborne pathogens (35).
This conclusion is supported by other studies that compared microbial water quality
between growing regions nationally (16, 37) and locally (12, 17, 38), and between water
types (32, 39-41). Indeed, multiple studies have shown that this variability in water
quality limits the efficacy of one-size-fits-all approaches to monitoring and mitigating
microbial hazards in aquatic environments. Understanding how microbial water quality
differs between water types (e.g., canal, pond, and stream) and regions is needed for
the development of water type and regional guidance for managing and mitigating
these hazards. Additionally, identification of strong regional and methodological signals
by some studies (15, 16, 32) further highlights the challenge of comparing findings
between studies conducted in different regions and on different water types when those
studies also used different methods. Data are needed to determine how and if (i) such
findings can be compared and (ii) methodological signals can be separated from signals
of interest (e.g., region and water type).

To address these knowledge gaps, we compiled a large data set representing a
diversity of regions, water types, and sampling and laboratory methods. We used these
data to (i) quantify the impact of methodological differences on observed microbial
water quality; (i) determine if methodological signals can be disentangled from other
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signals of interest (e.g., region and water type); and (iii) evaluate how using specific
methodological differences (e.g., collecting 1 L versus 10 L of water) impacts observed
microbial variability in water. To determine if strategies for managing microbial hazards
in surface water should be region, water type, and/or waterway specific, we examined
how strongly (i) water type and waterway-specific factors and (ii) regional classification
scheme (i.e, how samples were assigned to a given regions, such as by ecoregion
or climate region) were associated with microbial water quality after accounting for
methodological differences.

RESULTS
Data quality and compatibility

Of the 3,211,254 data points collected from peer-reviewed papers, publicly available
databases, citizen science groups, and government organizations, 2,429,990 (77%) were
retained in the final data set (Fig. 1), and are also provided in an online database
(https://github.com/wellerd2/Weller-et-al-2024-AEM-Datasets/tree/main). The retained
datapoints represent 100,410 unique sampling sites and included data points from all US
states, as well as multiple US territories, Canadian provinces, and Mexican states (Table
1; Fig. 2; Fig. S1). Additionally, data encompasses numerous major agricultural regions
(e.g., the Central Valley, the Columbia Basin, and the Mid-Atlantic). Table 2 was devel-
oped to support future field studies on microbial water quality, highlighting recom-
mended practices for data collection, recording, reporting, and future analyses. During
data compilation, studies with insufficient methodological data were dropped, such as
samples where volume for enumeration was not available. The vast majority of the
781,264 datapoints excluded were because methods for generic E. coli, total coliforms,
fecal coliforms, or Enterococcus did not provide any sufficient information on sampling
and/or enumeration methods (Fig. 1). One hundred and eight datapoints of foodborne
pathogen data were excluded because methodological data were not available. Since
complete GPS coordinates were needed to extract key non-methodological data (e.g.,
water type) assign unique site and waterway IDs, and apply the regional classification
schemes, 13,010 datapoints were excluded where complete GPS coordinates were not
reported or had missing information. Other datapoints that were excluded include 1,791
duplicates and 1,722 datapoints where waterway, water type, and water source could
not be determined. Errors in sampling date resulted in 1,265 datapoints being excluded;
most of these were excluded because the reported sample collection was listed as a year
in the future or unrealistically far in the past. The vast majority of excluded datapoints
were collected by local, state, or government agencies and were downloaded from
government portals. Almost all data provided directly by research or citizen science
groups or obtained from peer-reviewed papers were retained (Fig. 1).

Data compilation was complicated by challenges associated with translating data
sheets into English. Similarly, the failure of multiple citizen science and government
databases to provide method information or list methods online complicated data
compilation. These challenges were substantially reduced by the willingness of the
researchers to answer questions and share comprehensive data dictionaries as well
as reports/certifications found online. Inconsistency in reporting methods information
was also discovered. Many citizen science and government data sets used a standard
or government method. While peer-reviewed papers often described their methods,
these descriptions were often brief and seldom referred to the established methods
by name. We also found that many enumeration protocols had multiple names (e.g.,
Standard Method 9223, Colilert, and Colisure refer to the same protocol). The use of
internal laboratory nomenclature or abbreviations required extensive effort to link back
to the published protocol. For instance, data available through the US National Water
Quality Portal used >15 different United States Geological Survey (USGS)-specific terms
to refer to the same protocol. Additional common errors associated with data included
latitude as longitude and vice versa, not including the negative sign in the longitude, and
reporting unrealistic values for attributes (e.g., pH >14).
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Inconsistency in reporting methods and waterway information between and within
organizations meant that waterway and water source characteristics had to be verified
and corrected. For example, a single data set used >100 different names to refer to a
single waterway. Waterway names are not unique to individual waterways, and multiple
distinct streams, ponds, or rivers, even in a small geographical area, were identified with
the same name. Waterway name categories that were commonly shared between and
within geographical locations included color-based (e.g., silver lake), animal-based (e.g.,
deer creek), person-based (e.g., miller creek), and place-based (e.g., schoolhouse creek)
names. For example, it is important to ensure that silver lake in State A will not be coded
as the same waterway as silver lake in State B (color-based name). Here, any issues with
sampling site ID resulted in its replacement with a geo-ID to avoid confusion.

Non-methodological and methodological signals could not be disentangled
for foodborne pathogens and indicator organisms

Salmonella

Salmonella data (N = 9,348) were obtained from 35 studies representing 15 US states
and the District of Colombia, two Canadian provinces, and one Mexican state (Table
1; Table S2). While samples were collected between 1973 and 2019, 75% (N = 7,043)
were collected since 2012. Grab samples and Moore swabs represented 67% (N = 6,245)
and 33% (N = 3,103) of datapoints, respectively. Of the grab samples, 2,282 (37%) were
filtered using membrane filters; 748 (12%) were filtered through modified Moore swabs;
202 (3%) underwent tangential flow filtration; 1,944 (31%) were not filtered; and 1,069
(17%) samples did not describe a filtration method. Culture-based methods were used
to detect Salmonella in 7,225 samples (77%), while molecular methods were used for
2,123 samples (23%). Seventy percent of studies (N = 5,075) that used a culture-based
detection method used invA to confirm isolates as Salmonella.

Variance partitioning analysis demonstrated that 18% of variance in Salmonella
detection was jointly attributable to methodological and non-methodological factors,
while <1% and 13% of variance was uniquely attributable to methodological and
non-methodological factors, respectively (Fig. 3A; Table S3). When variance attributable
to waterway/sampling site, year/season, region, and methods was considered, the only
source of unique variance greater than 0.01% was waterway/sampling site (4%). When
the analysis was done to include waterway/sampling site with year/season, water type,
and methodological differences, 10% of variance was jointly attributable to all four
sources, while only 6% and 1% were uniquely attributable to waterway/sampling site
and methodological differences, respectively; no variance was uniquely attributable to
year/season and water type (Table S3).

After accounting for waterway and site-specific signals, the top-ranked factors
associated with the likelihood of Salmonella detection by conditional forest analysis
were sample filtration method, season, and sample volume (Fig. 4A; Table S4). Based
on generalized linear models and post hoc testing, the odds of Salmonella detection
differed significantly between all filtration methods (Table S5). When grab samples were
filtered through membrane filters as opposed to modified Moore swabs, there was a
fivefold [odds ratio (OR) = 4.70, standard errer (SE) = 1.26; P < 0.007] higher odds of
Salmonella detection (Table S5). Increasing sample volume also significantly increased
the odds of detecting Salmonella. As volume increased from 5 mL (OR = 0.13, 95% ClI
= 0.07-0.23) to 10 L (OR = 0.42, 95% Cl = 0.27-0.59), Salmonella detection increased
dramatically (Fig. 5A). Similar differences were observed when different sample types
and detection methods were used (Table S5). After accounting for methodological,
waterway, and site-specific signals, the top-ranked factors associated with the likelihood
of Salmonella detection were ecoregion, state, and water type (Table S6).
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3,211.254 potentially relevant data points identified through from peer-reviewed papers, publicly available
databases, citizen science groups, and government programs

cator bacteria

763.368 data points excluded were due to missing methods for fecal indi-

— ‘ 108 data points removed due to missing pathogen methodological data

— ‘ 1,791 duplicate data points removed

| S ‘ 13,010 data points removed due missing GPS coordinates

1,722 data points removed because waterway. water type, and water
source could not be determined

1.265 data points removed due to errors in the reported sampling date
(e.g.. date in future)

2,429,990 data points from 100,410 unique sampling sites retained for analysis*

FIG 1 Schematic representation showing data exclusion due to data quality and compatibility issues. *Numerous samples were tested for more than one

Salmonella Listeria spp. L. monocytogenes Pathogenic E. coli
9.348 data points 2,117 data points 5,442 data points 7,661 data points
Generic E. coli Enterococcus Fecal Coliform Total Coliform

1,362,230 data points

151.578 data points

1.127,750 data points

188,303 data points

microbial target. GPS, Global Positioning System.
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FIG 2 Location of the 100,410 unique sampling site locations represented by the data set compiled here. GPS coordinates were modified slightly to ensure
confidentiality. (The maps were created in R using the ggplot2 and sf packages.)

Listeria spp. and L. monocytogenes

Listeria spp. data (N = 2,117) were obtained from five studies representing four US states
and one Canadian province (Table 1; Table S2). L. monocytogenes data (N = 5,442) were
obtained from eight studies representing four US states and two Canadian provinces
(Table 1; Table S2). All Listeria spp. and L. monocytogenes data were collected between
2001 and 2018. Ninety-six percent of Listeria spp. data (N = 2,031) and 44% of L.
monocytogenes data (N = 2,398) were grab samples (Table S2). Seventy-seven percent (N
=1,573) and 23% (N = 458) of grab samples tested for Listeria spp. were filtered through
modified Moore swabs and membrane filters, respectively, while 19% (N = 457) and 79%
(N = 1,893) of grab samples tested for L. monocytogenes were filtered through modified
Moore swabs and membrane filters, respectively (Table S2). Two percent (N = 48) of
grab samples tested for L. monocytogenes were not filtered. Culture-based methods were
used by all studies to detect Listeria spp. and by seven studies (N = 5,406) to detect L.
monocytogenes. Six studies (N = 4,060) confirmed isolates as L. monocytogenes through
PCR and sequencing of sigB; one study (N = 36) used PCR and sequencing of hly; and one
study (N = 446) used biochemical assays (Table S2).

Only 1% of variance in the likelihood of detecting Listeria spp. was jointly attributable
to methodological and non-methodological factors, while 2% and 27% of variance were
uniquely attributable to methodological and non-methodological factors, respectively
(Table S3). Conversely, 8% of variance in the likelihood of detecting L. monocytogenes
was jointly attributable to methodological and non-methodological factors, while 0%
and 18% of variance were uniquely attributable to methodological and non-methodo-
logical factors, respectively (Fig. 3B; Table S3).
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Salmonella
Legend
Variation explained by both environmental factors
and methodical differences between studies (%)
Variation explained by the model [EV]
Residual (unexplained) variation [RV] EV=31% RV =69%
Listeria monocytogenes B Pathogenic E.coli C
9%
EV =25% RV =75% EV = 64% RV =36%

FIG 3 Variance in the likelihood of detecting (A) Salmonella, (B) Listeria monocytogenes, (C) and pathogenic E. coli that is jointly versus uniquely attributable to
non-methodological (e.g., sampling site, season, water type, waterway, and year) and methodological (e.g., culture versus molecular-based detection, sample
type, and volume) matrices.

After accounting for waterway and site-specific signals, the top-ranked factors
associated with likelihood of detecting both Listeria spp. and L. monocytogenes were
season, state, and sample type (Fig. 4B; Table S4). Based on generalized linear models and
post hoc testing, the odds of isolating L. monocytogenes differed significantly between
samples that were filtered through any type of filter compared to samples that were not
filtered (Table S5). Sample volume was negatively associated with odds of L. monocyto-
genes isolation (OR = 0.92, SE = 0.11, P = 0.047) (Fig. 5B; Table S5). After accounting for
methodological, waterway, and site-specific signals, the top-ranked factors associated
with the likelihood of Listeria spp. detection were water type, state, and census region.
The top-ranked factors associated with the likelihood of L. monocytogenes detection
were water type, state, and EPA region (Table S6).

PathogenicE. coli

Pathogenic E. coli data (N = 7,661) were obtained from 19 studies representing 20 US
states, 2 Canadian provinces, and 1 Mexican state (Table 1; Table S2). All samples were
collected between 2001 and 2019. Approximately half of samples tested for pathogenic
E. coli were sampled using Moore swabs (N = 3,230) and grab samples (N = 4,431). Of
the grab samples tested for pathogenic E. coli, 64% (N = 2,834) and 14% (N = 642) were
filtered through membrane filters and modified Moore swabs, respectively, while 22% (N
= 955) were not filtered. Culture-based methods were used to detect pathogenic E. coli in
58% (N = 4,407) of the samples, while molecular methods were used for 42% (N = 3,254).
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FIG 4 Results of conditional forest analysis that identified methodological and spatiotemporal factors associated with detection of (A) Salmonella, (B) L.
monocytogenes and (C) pathogenic E. coli in water. The outcome of these forests was the residuals of a regression analysis that modeled likelihood of target
pathogen detection as a function of two nested random effects (site and waterway). The y-axis shows the features ranked from highest to lowest variable
importance. Variable importance is a unitless relative measure; thus, the importance of one variable should only be compared to another variable in the same
plot, not between.

Based on variance partitioning analysis, 55% of variance in likelihood of detecting
pathogenic E. coli was jointly attributable to methodological and non-methodological
factors, with 0% and 9% of variance uniquely attributable to methodological and
non-methodological factors, respectively (Fig. 3C; Table S3). When the variance in
likelihood of detecting pathogenic E. coli attributable to waterway/sampling site, year/
season, region, and methodological differences was considered, no variance was jointly
attributable to all four sources, but 58% was jointly attributable to methods and at least
one other source (Table S3). For example, 48% of variance in the likelihood of detecting
pathogenic E. coli was jointly attributable to method, region, and waterway/sampling
site. After accounting for waterway and site-specific signals, the top-ranked factors
associated with the likelihood of pathogenic E. coli detection were state, the use of

A Salmonella B L. monocytogenes C Pathogenic E. coli

8 8 8

" v 0

i S <
g S £ 5
k=
v
e
S s 2 g
) S S S
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4
=)

o v o

& & &

LS
0.0 245, 5.0 T, 10.0 0.0 23 5.0 75 10.0 0.0 23 5.0 5 10.0

Sample Volume (L)

FIG 5 Impact of sample volume on probability of detection of (A) Salmonella, (B) L. monocytogenes, and (C) pathogenic E. coli according to generalized linear
mixed models implemented with fixed effects of sample volume and season and random effects of site nested in waterway nested in state. No grab samples
were tested for pathogen data in volumes greater than 10 L, and Moore swab volume was set to 10 L.
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eaeA for detection/confirmation, and use of culture-based versus molecular detection
methods (Fig. 4C; Table S4). Based on generalized linear mixed models and post hoc
testing, the odds of pathogenic E. coli detection differed significantly (P < 0.05) by
the genes used for detection/confirmation, if culture or molecular-based methods were
used, sample filtration method, and sample volume (Table S5). After accounting for
methodological, waterway, and site-specific signals, the top-ranked factors associated
with likelihood of pathogenic E. coli detection were state, water type, and agricultural
region (Table S6).

From the pathogenic E. coli samples, 1,978 samples were tested for eaeA allowing
for identification of enteropathogenic E. coli (EPEC). The majority of samples tested for
eaeA (95.5%; N = 1,890) were grab samples (Table S2). Based on variance partitioning
analysis, 47% of variance in the likelihood of detecting EPEC was jointly attributable to
methodological and non-methodological factors, while <1% and 15% of variance was
uniquely attributable to methodological and non-methodological factors, respectively
(Table S3). Season, state, and water type (general) were the top-ranked factors associated
with EPEC detection (Table S4). In the forest that included regional factors, the highest-
ranked factors associated with EPEC were water type, aquatic habitat type, and United
States Department of Agriculture (USDA) region (Table S6).

Of the 7,661 samples tested for pathogenic E. coli, 6,589 were tested for stx1 or stx2
for identification of samples that were presumptively positive for Shiga toxin-producing
E. coli (STEC; Table 1; Table S2). Approximately half of samples tested for STEC were
sampled using Moore swabs (N = 3,230) and half were sampled using grab samples (N
= 3,359). According to variable partitioning analysis, 16% of variance in the likelihood
of detecting STEC was jointly attributable to methodological and non-methodological
factors, while <1% and 21% of variance was uniquely attributable to methodological and
non-methodological factors, respectively (Table S3). After accounting for waterway and
site-specific signals, the top-ranked factors associated with likelihood of STEC detection
were state, use of culture- versus molecular-based detection methods, and season
(Table S4). After accounting for methodological, waterway, and site-specific signals, the
top-ranked factors associated with the likelihood of STEC detection were water type,
state, and EPA region (Table S6).

Of the 7,661 samples tested for pathogenic E. coli, 1,370 grab samples were tested for
multiple genes allowing for presumptive identification of E. coli 0157 positive samples
(Table 1; Table S2). After accounting for waterway and site-specific signals, the top-
ranked factors associated with likelihood of E. coli 0157 detection were year, season, and
water type (Table S4). After accounting for methodological, waterway, and site-specific
signals, the top-ranked factors associated with the likelihood of E. coli 0157 detection
were aquatic habitat, USDA region, and agricultural region.

Non-methodological factors, as opposed to methodological factors, were
more strongly associated with fecal indicator bacteria concentration

Generic E. coli (N = 1,362,230), Enterococcus (N = 151,578), fecal coliform (N = 1,127,750),
and total coliform (N = 188,303) data were obtained from 57 US states and territories,
Canadian provinces, and Mexican states (Table 1). While data on all four fecal indicator
bacteria were collected from a diversity of water types, the proportion of data represen-
ted by each water type varied by indicator. For instance, oceans, tidal rivers, and estuaries
represented 1% (N = 18,157) of E. coli data, but 8% (N = 12,108), 13% (N = 24,288), and
40% (N = 456,783) of Enterococcus, total coliform, and fecal coliform data, respectively.
Conversely, ponds and lakes represented 5% (N = 53,818), 13% (N = 25,006), 21% (N =
38,309), and 24% (328,887) of fecal coliform, total coliform, Enterococcus, and E. coli data,
respectively. Canals represented <5% of data for all four fecal indicators.

While E. coli concentrations were enumerated using MPN-based methods for 66%
of samples (N = 918,919), 30% (N = 422,429), 3% (N = 48,585), and <1% (N = 1,464)
were enumerated using membrane filtration, direct plating, or quantitative PCR-based
approaches, respectively. IDEXX Quanti-Tray (65%; N = 904,814), EPA Method 1103 (10%;
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N = 133,633), and EPA Method 1603 (8%; N = 106,500) were most frequently used
for E. coli enumeration. Total coliform enumeration was most frequently performed
using MPN-based methods (69%; N = 128,877), membrane filtration (23%; N = 43,120),
and direct plating (7%; N = 13,562). Fecal coliform enumeration was most frequently
performed using membrane filtration (58%; N = 650,123) and MPN-based methods (43%;
N = 484,834). Standard Method 9222D was most frequently used for fecal coliform
enumeration (54%; N = 610,324) followed by AOAC 978 (22%; N = 249,272) and APHA
3.2B (9%; N = 106,737). Approximately 40% of samples were tested for Enterococcus using
membrane filtration (N = 66,455) and MPN-based methods (N = 64,393), while 14% (N
= 20,730) used a molecular approach. IDEXX Enterolert (50%; N = 60,313), EPA Method
1600 (24%; N = 36,097), and Standard Method 9230C (20%; N = 29,581) were most
frequently used for Enterococcus enumeration.

After accounting for waterway and site-specific signals, season was the top-ranked
factor associated with E. coli concentrations in canals, rivers, streams, and other water
types (e.g., estuaries, runoff, and wastewater) and the second ranked factor associated
with E. coli concentrations in ponds, reservoirs, and lakes. Season was also the top-ranked
factor associated with Enterococcus and fecal coliform concentrations in all water types
and the second highest-ranked factor associated with total coliform concentrations
(Table S7 and S8). After season, state was the second highest-ranked factor associated
with E. coli concentrations in canals, rivers, streams, and other water types, Enterococcus
concentrations, and fecal coliform concentrations in ponds, reservoirs, lakes, rivers, and
streams (Table S7 and S8). State was the highest-ranked factor associated with E. coli
concentrations in ponds, reservoirs, and lakes. Freshwater status and the mid-scale
and/or coarse-scale methods factors were among the lowest ranked factors for all
fecal indicator bacteria, regardless of water type. After accounting for methodological,
waterway, and site-specific signals, the top-ranked factors associated with Enterococcus
concentrations were ecoregion, water type, and hydrologic region. The top-ranked
factors associated with total coliform concentration were state, terrestrial habitat type,
and ecoregion (Table S8). Ecoregion was strongly associated with E. coli concentrations,
and habitat type was strongly associated with fecal coliform concentrations in all water
types considered.

DISCUSSION

Our analyses demonstrated water environments are intrinsically complex, and the use of
different laboratory and sampling methods limited our ability to untangle this complex-
ity, generating non-comparable results. Data collection and management need to be
standardized across studies, and a minimum set of attributes that all studies should
collect needs to be established (Table 2). While data from 2,429,990 samples were
analyzed, these represent only 77% of the available data because 781,264 samples
were discarded due to data quality issues. Even within a single organization, some data
could be retained, while some were discarded due to inconsistencies in data collection,
cleaning, and management within an organization. Furthermore, physiochemical water
attributes and meteorological data, which are often considered during risk assessments
for water quality, were not included in the present study due to inconsistencies in data
collection and data quality issues. This highlights the need for (i) standardized data
collection, cleaning, and management protocols within organizations, and (ii) reporting
and archiving water quality data in a consistent way even when studies are conducted
by unaffiliated organizations. Similar calls for uniform data standards have been made in
other fields, and meeting such standards has become a requirement of certain fund-
ing agencies [e.g., US Health and Human Services Office of Minority Health Resource
Center (149), US Office of Management and Budget (150), and US Centers for Disease
Control and Prevention (151)]. Funding source-generated mandates show that method
standardization and data reporting requirements are possible and provide a blueprint
for implementing similar standards for water quality data. Such standards could be
established by a consortium of key stakeholders, including funding agencies and/or
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organizations from academia, industry, and government that generate large volumes
of water data. Table 2 was developed using lessons learned from this study to help
jumpstart the standardization conversation among microbial water quality researchers
and end users. The table provides a brief overview of best practices and key considera-
tions for collecting, recording, and reporting of microbial water quality data; Table 2 also
cites resources that can be referred to for additional or more in-depth guidance.

Methodological differences between studies indicates findings are not comparable,
limiting our ability to identify the broader ecological phenomenon driving foodborne
pathogen contamination of waters and complicating the development of effective
strategies for managing public health risks associated with contamination. Based on
variance partitioning analysis, the impact of methodological differences on observed
microbial water quality could not be disentangled from the impact of non-methodolog-
ical (e.g., region, waterway, and water type) differences when the outcome was the
detection of foodborne pathogens, indicator organisms, and fecal indicators. Conditional
forest analysis showed that methodological differences were strongly associated with
and predictive of observed water quality regardless of site-specific signals from the data.
This is consistent with previous studies where the likelihood of detecting foodborne
pathogens was strongly associated with the methods used to collect or test samples (15,
16, 27-29, 32). Past studies found that sample type, sample filtration method, and sample
volume were strongly associated with the detection of Listeria spp., L. monocytogenes,
Salmonella, and/or pathogenic E. coli (15, 16, 27-29, 32). Compared to L. monocytogenes,
Salmonella and pathogenic E. coli are much more likely to be detected in 10-L grab
samples filtered through modified Moore swabs compared to Moore swabs (15, 16,
27, 28). Our analysis also found significant differences in the likelihood of foodborne
pathogen detection by filtration method but did not observe a significant difference in L.
monocytogenes detection between membrane-filtered and modified Moore swab filtered
samples, unlike a previous study (15). This difference may be due to substantially fewer
samples (N = 29) in the previous study than the present study (N = 5,442) and most
studies that tested for L. monocytogenes used the same or similar laboratory methods.

The impact of methodology on foodborne pathogen detection may be confounded
by the heterogeneity of methods and the fact that some methods were only used by
a single or small number of studies all conducted in a single region and/or on a single
water type. For example, all grab samples that were not filtered and were tested for
Salmonella came from a single study conducted in Sinaloa, Mexico. Therefore, we do not
know if some of the larger odds ratios reported in Table S5 are due to actual methodo-
logical differences or confounding between methodology, region, study, laboratory, or
water type. The size and heterogeneity of the data set reported here help reduce the
impact of this confounding for commonly used methods (e.g., membrane filtration,
modified Moore swabs, and Moore swabs).

With the exception of Listeria spp. and L. monocytogenes, larger sample volumes were
associated with an increased likelihood of foodborne pathogen detection. Past studies
demonstrating a similar trend have hypothesized that the inverse relationship between
Listeria recovery and sample volume could be due to more competitive microflora in
larger volume samples (15, 16). Regardless of why Listeria detection was inversely related
to volume, Salmonella and pathogenic E. coli detection were positively associated with
sample volume. This is consistent with a past study that found a 26-fold and 44-fold
increase in odds of Salmonella recovery from 10-L grab samples compared to 1.0 and 0.1
L, respectively (32). A plateau effect was seen in the relationship between sample volume
and odds of Salmonella and pathogenic E. coli detection; contrary to this previous study,
increasing volume above 1 L does not substantially increase the odds of detection. Since
collecting and processing larger volumes of water are more labor and capital intensive
than collecting and processing smaller volumes, knowing the threshold for diminishing
returns for sample volume is critical.

Similar to sample type, filtration method, sample volume, and pathogen detec-
tion method were all strongly associated with Salmonella and pathogenic E. coli
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detection. While detection method was not significantly associated with L. monocyto-
genes detection, this may be an artifact of the fact that only one study representing 36
samples from a single water type and region used a molecular approach to detect L.
monocytogenes (16). A previous study found Listeria detection was much more frequent
when a TagMan assay was used compared to a culture-based method (23). In the
present study, odds of Salmonella detection were much lower, and odds of pathogenic
E. coli detection were much higher when molecular-based as opposed to culture-based
detection was used. A strong association between pathogenic E. coli, STEC, and EPEC
detection and detection method is unsurprising, given the difficulties associated with
culture-based detection of these foodborne pathogens (152-157). The finding that the
odds of Salmonella detection were negatively associated with the use of molecular
detection methods may be due to the coarse classification as either a culture-based or
a molecular method. This binary classification ignored many of the substantial differ-
ences between protocols within these broad categories. For example, some studies
used a culture-based methods that included PCR confirmation following isolation or
a PCR-screen prior to isolation, while others used culture-based methods and did not
include any form of molecular confirmation. The target gene was significantly associated
with both likelihood of Salmonella and pathogenic E. coli detection in the present
and previous studies (158-160). Similarly, the media used, incubation temperature, and
timing are all known to affect foodborne pathogen recovery by culture-based methods
(154, 156, 161, 162), and these were not considered here. Breaking down detection
methods into culture and molecular-based approaches may have made it difficult to see
the distinctions between various culture-based methods. This could have made it seem
like there were fewer differences between culture-based and molecular approaches than
there were. Despite this limitation, the findings of this and previous studies (16, 23, 158-
160) highlight the impact of methodological differences between studies on observed
water quality and suggest results may not be directly comparable between studies that
used culture- and molecular-based methods. It is important to note that the difference
in likelihood of detection by method could be due to higher false positive rates for
culture-based or false negative rates for molecular-based methods.

Methodological factors were less impactful in the fecal indicator conditional forest
analyses than non-methodological factors. This is unsurprising as many enumeration
methods are considered equivalent to EPA Method 1603 (136, 137). Thus, existing fecal
indicator data may be better suited for meta-analysis and use in large-scale modeling
efforts than foodborne pathogen data. Much of the fecal indicator data (99.9% of E. coli,
86.3% of Enterococcus, and 100% of fecal and total coliform data) reported here were
generated using culture-based as opposed to molecular methods; thus, differences due
to the use of molecular methods could not be fully explored. Previously, higher E. coli
concentrations using PCR-based as opposed to culture-based enumeration methods
have been reported (163). While combining fecal indicator data enumerated using
molecular and culture-based approaches will require further consideration, the level of
methods standardization recommended for foodborne pathogen detection may not be
needed for routine fecal indicator monitoring. There is still a need for standardization in
data reporting and management since the majority of the 781,264 samples discarded for
data issues were for fecal indicators.

Opportunities for site or waterway-specific management exist since substantial
variance in microbial water quality was still uniquely attributable to non-methodological
factors even though methodological signals could not be disentangled from non-meth-
odological signals. While little to no variance in microbial water quality was uniquely
attributable to methodological factors, a substantial amount of variance was uniquely
attributable to non-methodological factors. More variance was uniquely attributable
to sampling site and waterway compared to other non-methodological factors (e.g.,
region, year, and season), highlighting the dependency of microbial water quality on
local environmental context. This is consistent with past studies that found evidence
of strong site and waterway effects, and/or concluded that microbial water quality was

February 2024 Volume 90 Issue 2

Applied and Environmental Microbiology

10.1128/aem.01835-2317

Downloaded from https://journals.asm.org/journa/aem on 24 July 2024 by 72.90.81.11.


https://doi.org/10.1128/aem.01835-23

Full-Length Text

dependent on the local environmental context (16, 164, 165). Such dependency on local
environmental factors complicates the establishment of one-size-fits-all water quality
standards or universal best practices for the use of water.

While microbial water quality is strongly affected by local environmental factors, we
implemented conditional forest analysis to see if and which regional, temporal, and
water type factors were most strongly associated with each microbial water quality
target. Water type-related factors were the top-ranked feature for five of seven food-
borne pathogen forests, although the exact factor varied by microbial target. Conceptu-
ally, this is logical because different water types represent distinct environments where
different processes drive water quality. For example, non-tidal rivers and streams are
unidirectional and strongly influenced by upstream environmental conditions, but the
impact of upstream conditions is reduced for other water types, such as the Great Lakes
or seeps fed by groundwater. Past studies that sampled multiple water types often
reported drastically different foodborne pathogen prevalence for the sampled water
types (7, 12, 40, 166).

Every forest that considered regional factors in the present study included a regional
feature among the top 10% of factors. Environmentally derived factors based on
ecoregion (N = 9), habitat type (terrestrial = 6, aquatic = 2), climate (N = 1), or hydrologic
region (N = 1) were the top-ranked regional features for 14 of the 17 forests. This is
consistent with past studies that have repeatedly associated microbial water quality with
environmental parameters, including weather and hydrologic characteristics (8-11, 167-
172). Here, region and water type were strongly associated with several of the microbial
water quality parameters considered in the present study.

Conclusion

This analysis shows that our current understanding of foodborne pathogen dynamics
in water systems is limited by methodological confounders and brings into question
the comparability of foodborne pathogen data generated by studies using different
sampling and/or laboratory methods. Foodborne pathogen ecology in water is complex,
without the added complications of methodological differences. Without comparabil-
ity, it is difficult to identify the broader ecological phenomenon driving foodborne
pathogen contamination of waters and complicating the development of effective
strategies for managing public health risks associated with microbial contamination.
This study highlights the need for standardizing sampling and laboratory methods
used for microbial water quality testing. Future work could include comparing methods
for equivalency. Similar standards are needed for data collection, management, and
reporting. Since there is a diversity of methods used for a variety of sample types and
fields within applied microbiology, similar analyses are needed to ensure the comparabil-
ity of findings for other subfields of food and environmental microbiology. If methodo-
logical and data standards are not implemented, comparability will continue to be an
issue, and there will always be a caveat to future findings.

MATERIALS AND METHODS
Data sets

Water quality data from peer-reviewed papers, publicly available databases, citizen
science groups, and government programs were compiled (Table 1; database: https://
github.com/wellerd2/Weller-et-al-2024-AEM-Datasets/tree/main). For each sampling site,
water type, freshwater/saltwater status, and waterway name were determined; if these
data were not available, Google Earth and Google Maps were used to obtain it.
Four different, nested classifications for water type were used. The finest scale varia-
ble (fine-scale water type) included 27 categories; mid-scale water type included 20
categories; coarse-scale water type included 10 categories; and general-scale water type
included four categories. For example, urban ponds (fine-scale water type) collapse
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into ponds (mid-scale), which collapse into lakes/ponds/reservoirs (coarse-scale), which
collapse into surface water (general). Footnote h in Table S9 describes all categories of
the nested water type classification scheme used here.

Sampling and laboratory methods for each study were previously published, available
online, or shared by the data set owners through personal correspondence. Key methods
data were extracted and added to sample attributes. If methods data were not available
for a sample, the sample was excluded from the study. Sample type, detection method,
sample volume, and filtration method were recorded for samples with foodborne
pathogen data. Since several of the analytical methods used here could not handle
missing data, Moore swab samples were assigned a volume of 10 L, which is the largest
grab sample volume collected in this study.

Studies often tested samples for a microbial target using a culture-based method
and confirmed presumptive positives using a molecular method or vice versa. However,
most of the data sets that included a confirmation step only provided data on if both
the culture and molecular results were positive (e.g., included a single column for
if it was culture-positive and molecular confirmed, not separate columns for culture
and molecular results). As a result, only a single positive-negative designation was
reported for most data sets. Thus, a sample was classified as being tested using a
culture-based method, if there was any culture-based step (i.e.,, culture-based detection
with no confirmation, molecular detection with culture confirmation, and culture-based
detection with molecular confirmation). However, if results were available for both the
culture and molecular tests separately, we included these as separate data rows with a
common sample site ID and date; indeed, if any sample was tested by multiple methods
(e.g., different filtration methods and sample volumes), then these results were treated
as separate data rows linked by site ID and date. If a sample was screened by molecular
detection with culture confirmation, it was considered molecular. If molecular methods
were used, target genes were noted. Since there are multiple types of pathogenic
Escherichia coli, samples were categorized as positive-negative for any pathogenic E.
coli, and for EPEC (based on detection of the eaeA gene), STEC (based on detection of the
stx genes), and E. coli 0157 (using culture-based methods and PCR confirmation).

Fecal indicator methods were classified by the protocol used for enumeration and
separately by the media used. Since not all studies used an established protocol, three
different approaches were used to categorize methods (Table S1). A fine-scale method
factor was created and reflects the established protocol used (e.g., Standard Method
9222B) or if a specific protocol could not be identified, study ID was used in place of the
fine-scale method. A mid-level method factor was used to capture methods that were
almost the same but with slight variations (e.g., Standard Method 9222B and Standard
Method 9222C were Standard Method 9222). A coarse-level factor was used to capture
if direct plating, membrane filtration, most probable number estimation, or a molecular
approach was used for enumeration.

Assigning samples to regions

Using GPS coordinates and county, we classified samples separately into regions using
different regional schemes. Different approaches for grouping samples into regions
were used to determine if there was a regional scheme that accounted for the great-
est variance for each microbial target. Fourteen regional schemes were considered,
including schemes based on the biome, ecoregion, aquatic and terrestrial habitat type,
climate region, hydrologic region (based on USGS HUC2 unit codes; 173) regional
classifications used by US federal agencies (i.e., Census Bureau and US Environmental
Protection Agency), and on agricultural practices and/or output (USDA-Farm Resource
Regions, Farm Production Regions, National Agricultural Statistics Service Regions, and
Human Geography Agricultural Regions). For US-specific schemes, sites outside the US
were assigned to the region of the closest US site.
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Statistical analysis

All analyses were performed in R version 4.0.3 (R Foundation for Statistical Computing,
Vienna, Austria). A summary of all analyses implemented here, as well as their reason for
being implemented and key model specifications, is outlined in Table 3 . Table S9 lists
methodological and non-methodological factors used here.

Conditional forest analysis

Conditional forest analysis was used to characterize hierarchical associations between
methodological, spatial, and temporal factors to better understand if and when
methodological differences affected observed microbial water quality, and if interactions
between methods and other factors might affect observed microbial water quality.
Due to the large number of samples with E. coli or fecal coliform data, we lacked the
computational resources to implement a single forest for either fecal indicator. Instead,
separate E. coli and fecal coliform forests were implemented for samples collected from
canals, lakes and ponds, streams, rivers, and all other water types (e.g., groundwater and
ocean). As a result, five separate forests were run using the E. coli and fecal coliform
data. Prior to training each forest, a general linear model (for continuous outcomes) or
generalized linear model (for binary outcomes) with a random effect of site ID nested in
waterway was fit using the Ime4 package (174); the dependent variable in the forest was
the residuals from this model.

Separately, conditional forest analysis was used to determine if water type and/or
regional scheme was more strongly associated with each microbial target after
accounting for other confounding factors (e.g., methodological factors). As described
above, separate water type-specific models were implemented for the E. coli and fecal
coliform data. Prior to training each forest, a general linear model or generalized linear
model was fit with random effects for each methodological factor available for the
microbial target using the Ime4 package (174). If the model failed to converge or had
singular fit, the model was re-parameterized (e.g., random effect shifted to fixed effect, or
a factor was dropped); the dependent variable in the forest was the residuals from this
model. For both sets of forests, unbiased conditional forest analysis was implemented
using the moreparty package (175). Conditional variable importance was calculated to
identify factors in each forest that were most strongly associated with each microbial
target; conditional variable importance was used because it is unbiased by correlation
between covariates.

Variance attributable to methodological versus non-methodological signals

Variance partitioning analysis was implemented using the vegan package (176) to
quantify the variance in likelihood of foodborne pathogen detection uniquely and
jointly attributable to methodological and non-methodological factors. For foodborne
pathogen targets, four sets of variance partitioning analyses were performed using the
following sets of matrices (i) state and region, site (waterway, site, water type, and
freshwater status), temporal (season and year), and methodological factors; (ii) waterway
(waterway and sampling site), water type (water type and freshwater status), temporal
and methodological factors; (iii) methodological versus all other non-methodological
factors; and (iv) sampling site, methodological factors, and all other non-methodological
factors. Due to the computational intensity of these analyses and the large number of
samples, variance partitioning analysis was not performed for fecal indicator bacteria.

Mixed models were implemented to identify “comparable” methods

To quantify how using a given sample processing or laboratory method influenced the
likelihood of foodborne pathogen or indicator organism detection, generalized linear
models were implemented using the Ime4 package (174). The models were implemen-
ted with the binomial family, a logit link, random effects of site nested in waterway
nested in state, a random effect of season, and a fixed effect for the methodological
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factor of interest. To determine if specific methodological choices generated comparable
data (e.g., if there was a significant difference in the likelihood of detection if membrane
filtration, modified Moore swabs, or no filter was used), Tukey’s honestly significant
difference was performed using the multcomp package (177). To account for multiple
comparisons, the Benjamin-Hochberg multiple comparison correction was used. These
analyses were only performed using the foodborne pathogen data (as opposed to the
fecal indicator data) because (i) foodborne pathogen contamination is the primary
outcome of interest and (ii) methodological factors were consistently among the top-
ranked factors in the foodborne pathogen forests but not in fecal indicator forests.
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